
11

Answers to Even-numbered Exercises

1. Rt works.2. The special parameter "$@" is referenced twice in the out script
(page 425). Explain what would be different if the parameter "$*" were
used in its place.

If you replace "$@" with "$*" in the out script, cat or less would be given
a single argument: a list of all files you specified on the command line
enclosed within single quotation marks. This list works when you specify a
single filename. When you specify more than one file, the shell reports No
such file or directory because there is not a file whose name matches the
string you specified on the command line (SPACEs are not considered special
characters when they are enclosed within single quotation marks).

3. Write a filt file in the list.4. Write a function that takes a single filename as an argument and adds
execute permission to the file for the user.

$ function perms () {
> chmod u+x $1
> }

a. When might such a function be useful?

When you are writing many shell scripts, it can be tedious to give many
chmod commands. This function speeds up the process.

b. Revise the script so it takes one or more filenames as arguments and
adds execute permission for the user for each file argument.

$ function perms () {
> chmod u+x $*
> }

10

2

c. What can you do to make the function available every time you log in?

Put the function in ~/.bash_profile and/or ~/.bashrc to make it available
each time you log in (using bash).

d. Suppose that, in addition to having the function available on subsequent
login sessions, you want to make the function available in your current
shell. How would you do so?

Use source to execute the file you put the function in. For example:

$ source ~/.bash_profile
5. When mightasons as you can think of.6. Write a shell script that displays the names of all directory files, but no

other types of files, in the working directory.

There are many ways to solve this problem. The listdirs script uses file to
identify directory files and grep to pull them out of the list. Then sed
removes everything from file’s output, starting with the colon.

$ cat listdirs
file "$@" |
grep directory |
sed 's/:.*//'

7. Write a script toy the time.8. Enter the following script named savefiles, and give yourself execute
permission to the file:

$ cat savefiles
#! /bin/bash
echo "Saving files in working directory to the file savethem."
exec > savethem
for i in *
 do
 echo "==="
 echo "File: $i"
 echo "==="
 cat "$i"
 done

a. Which error message do you receive when you execute this script?
Rewrite the script so that the error does not occur, making sure the
output still goes to savethem.

You receive the following error message:

cat: savethem: input file is output file

To eliminate the error message, add the following lines after the line
with do on it:

if [$i == "savethem"] ; then
 continue
fi

3

b. What might be a problem with running this script twice in the same
directory? Discuss a solution to this problem.

Each time you run savefiles, it overwrites the savethem file with the
current contents of the working directory. When you remove a file and
run savefiles again, that file will no longer be in savethem. If you want
to keep an archive of files in the working directory, you need to save the
files to a new file each time you run savefiles. If you prefix the filename
savethem with $$, you will have a unique filename each time you run
savefiles.

9. Read theestions:10. Using the find utility, perform the following tasks:

a. List all files in the working directory and all subdirectories that have
been modified within the last day.

$ find . -mtime -1

b. List all files you have read access to on the system that are larger than 1
megabyte.

$ find / -size +1024k

c. Remove all files named core from the directory structure rooted at your
home directory.

$ find ~ -name core -exec rm {} \;

d. List the inode numbers of all files in the working directory whose
filenames end in .c.

$ find . -name "*.c" -ls

e. List all files you have read access to on the root filesystem that have
been modified in the last 30 days.

$ find / -xdev -mtime -30

4

11. Write a ty.)12. Write a script that takes the name of a directory as an argument and searches
the file hierarchy rooted at that directory for zero-length files. Write the names
of all zero-length files to standard output. If there is no option on the
command line, have the script delete the file after displaying its name, asking
the user for confirmation, and receiving positive confirmation. A –f (force)
option on the command line indicates that the script should display the
filename but not ask for confirmation before deleting the file.

The following script segment deletes only ordinary files, not directories. As
always, you must specify a shell and check the arguments.

$ cat zerdel
if ["$1" == "-f"]
 then
 find $2 -empty -print -exec rm -f {} \;
 else
 find $1 -empty -ok rm -f {} \;
fi

13. Write a scrip the colons).14. Generalize the script written in exercise 13 so the character separating the
list items is given as an argument to the function. If this argument is
absent, the separator should default to a colon.

This script segment takes an option in the form –dx to specify the
delimiter x:

$ cat nodel
if [[$1 == -d?]]
 then
 del=$(echo $1 | cut -b3)
 shift
 else
 del=:
fi
IFS=$del
set $*
for i
 do
 echo $i
done

5

15. Writeriable.16. Rewrite bundle (page 451) so the script it creates takes an optional list of
filenames as arguments. If one or more filenames are given on the
command line, only those files should be re-created; otherwise, all files in
the shell archive should be re-created. For example, suppose all files with
the filename extension .c are bundled into an archive named srcshell, and
you want to unbundle just the files test1.c and test2.c. The following
command will unbundle just these two files:

$ bash srcshell test1.c test2.c

$ cat bundle2
#!/bin/bash
bundle: group files into distribution package

echo "# To unbundle, bash this file"
for i
do
 echo 'if echo $* | grep -q' $i '|| [$# = 0]'
 echo then
 echo "echo $i 1>&2"
 echo "cat >$i <<'End of $i'"
 cat $i
 echo "End of $i"
 echo fi
done

17. Which kind of links ind? Why?18. In principle, recursion is never necessary. It can always be replaced by an
iterative construct, such as while or until. Rewrite makepath (page 502) as
a nonrecursive function. Which version do you prefer? Why?

function makepath2()
{
wd=$(pwd)
pathname=$1

while [[$pathname = */* && ${#pathname} > 0]]
 do
 if [[! -d "${pathname%%/*}"]]
 then
 mkdir "${pathname%%/*}"
 fi
 cd "${pathname%%/*}"
 pathname="${pathname#*/}"
 done
if [[! -d $pathname && ${#pathname} > 0]]
 then
 mkdir $pathname
fi
cd $wd
}

The recursive version is simpler: There is no need to keep track of the
working directory and you do not have to handle the task of making the
final directory separately.

6

19. Lists are ct, as in20. Write a function that takes a directory name as an argument and writes to
standard output the maximum of the lengths of all filenames in that
directory. If the function’s argument is not a directory name, write an error
message to standard output and exit with nonzero status.

$ function maxfn () {
> declare -i max thisone
> if [! -d "$1" -o $# = 0]
> then
> echo "Usage: maxfn dirname"
> return 1
> fi
>
> max=0
> for fn in $(/bin/ls $1)
> do
> thisone=${#fn}
> if [$thisone -gt $max]
> then
> max=$thisone
> fi
> done
> echo "Longest filename is $max characters."
> }

7

21. Modifin that hierarchy.22. Write a function that lists the number of ordinary files, directories, block
special files, character special files, FIFOs, and symbolic links in the working
directory. Do this in two different ways:

a. Use the first letter of the output of ls –l to determine a file’s type.

$ function ft () {
> declare -i ord=0 dir=0 blk=0 char=0 fifo=0 symlnk=0 other=0
>
> for fn in *
> do
> case $(ls -ld "$fn" | cut -b1) in
> d)
> ((dir=$dir+1))
> ;;
> b)
> ((blk=$blk+1))
> ;;
> c)
> ((char=$char+1))
> ;;
> p)
> ((fifo=$fifo+1))
> ;;
> l)
> ((symlnk=$symlnk+1))
> ;;
> a-z)
> ((other=other+1))
> ;;
> *)
> ((ord=ord+1))
> ;;
> esac
> done
>
> echo $ord ordinary
> echo $dir directory
> echo $blk block
> echo $char character
> echo $fifo FIFO
> echo $symlnk symbolic link
> echo $other other
> }

8

b. Use the file type condition tests of the [[expression]] syntax to
determine a file’s type.

$ function ft2 () {
> declare -i ord=0 dir=0 blk=0 char=0 fifo=0 symlnk=0 other=0
>
> for fn in *
> do
> if [[-h $fn]]
> then ((symlnk=$symlnk+1))
> elif [[-f $fn]]
> then ((ord=ord+1))
> elif [[-d $fn]]
> then ((dir=$dir+1))
> elif [[-b $fn]]
> then ((blk=$blk+1))
> elif [[-c $fn]]
> then ((char=$char+1))
> elif [[-p $fn]]
> then ((fifo=$fifo+1))
> else
> ((other=other+1))
> fi
> done
>
> echo $ord ordinary
> echo $dir directory
> echo $blk block
> echo $char character
> echo $fifo FIFO
> echo $symlnk symbolic link
> echo $other other
> }

23. Modify arranged.

