
11

Answers to Even-numbered Exercises

1.2. The special parameter "$@" is referenced twice in the out script
(page 1011). Explain what would be different if the parameter "$*" were
used in its place.

If you replace "$@" with "$*" in the out script, cat or less would be given
a single argument: a list of all files you specified on the command line
enclosed within single quotation marks. This list works when you specify a
single filename. When you specify more than one file, the shell reports No
such file or directory because there is not a file whose name matches the
string you specified on the command line (SPACEs are not considered special
characters when they are enclosed within single quotation marks).

3.4. Write a function that takes a single filename as an argument and adds execute
permission to the file for the user.

$ function perms () {
> chmod u+x $1
> }

a. When might such a function be useful?

When you are writing many shell scripts, it can be tedious to give many
chmod commands. This function speeds up the process.

b. Revise the script so it takes one or more filenames as arguments and adds
execute permission for the user for each file argument.

$ function perms () {
> chmod u+x $*
> }

c. What can you do to make the function available every time you log in?

28

2

Put the function in ~/.bash_profile and/or ~/.bashrc to make it available
each time you log in (using bash).

d. Suppose that, in addition to having the function available on subsequent
login sessions, you want to make the function available in your current
shell. How would you do so?

Use source to execute the file you put the function in. For example:

$ source ~/.bash_profile

5.6. Write a shell script that displays the names of all directory files, but no other
types of files, in the working directory.

There are many ways to solve this problem. The listdirs script uses file to
identify directory files and grep to pull them out of the list. Then sed
removes everything from file’s output, starting with the colon.

$ cat listdirs
file "$@" |
grep directory |
sed 's/:.*//'

7.8. Enter the following script named savefiles, and give yourself execute
permission to the file:

$ cat savefiles
#! /bin/bash
echo "Saving files in working directory to the file savethem."
exec > savethem
for i in *
 do
 echo
"==="
 echo "File: $i"
 echo
"==="
 cat "$i"
 done

a. Which error message do you receive when you execute this script?
Rewrite the script so that the error does not occur, making sure the output
still goes to savethem.

You receive the following error message:

cat: savethem: input file is output file

To eliminate the error message, add the following lines after the line with
do on it:

if [$i == "savethem"] ; then
 continue
fi

3

b. What might be a problem with running this script twice in the same
directory? Discuss a solution to this problem.

Each time you run savefiles, it overwrites the savethem file with the cur-
rent contents of the working directory. When you remove a file and run
savefiles again, that file will no longer be in savethem. If you want to keep
an archive of files in the working directory, you need to save the files to
a new file each time you run savefiles. If you prefix the filename savethem
with $$, you will have a unique filename each time you run savefiles.

9.10. Using the find utility, perform the following tasks:

a. List all files in the working directory and all subdirectories that have been
modified within the last day.

$ find . -mtime -1

b. List all files you have read access to on the system that are larger than 1
megabyte.

$ find / -size +1024k

c. Remove all files named core from the directory structure rooted at your
home directory.

$ find ~ -name core -exec rm {} \;

d. List the inode numbers of all files in the working directory whose filenames
end in .c.

$ find . -name "*.c" -ls

e. List all files you have read access to on the root filesystem that have been
modified in the last 30 days.

$ find / -xdev -mtime -30

11.12. Write a script that takes the name of a directory as an argument and searches
the file hierarchy rooted at that directory for zero-length files. Write the names
of all zero-length files to standard output. If there is no option on the command
line, have the script delete the file after displaying its name, asking the user for
confirmation, and receiving positive confirmation. A –f (force) option on the
command line indicates that the script should display the filename but not ask
for confirmation before deleting the file.

The following script segment deletes only ordinary files, not directories. As
always, you must specify a shell and check the arguments.

$ cat zerdel
if ["$1" == "-f"]
 then
 find $2 -empty -print -exec rm -f {} \;
 else
 find $1 -empty -ok rm -f {} \;
fi

4

13.14. Generalize the script written in exercise 13 so the character separating the
list items is given as an argument to the function. If this argument is absent,
the separator should default to a colon.

This script segment takes an option in the form –dx to specify the
delimiter x:

$ cat nodel
if [[$1 == -d?]]
 then
 del=$(echo $1 | cut -b3)
 shift
 else
 del=:
fi
IFS=$del
set $*
for i
 do
 echo $i
done

15.16. Rewrite bundle (page 1037) so the script it creates takes an optional list of
filenames as arguments. If one or more filenames are given on the command
line, only those files should be re-created; otherwise, all files in the shell
archive should be re-created. For example, suppose all files with the file-
name extension .c are bundled into an archive named srcshell, and you want
to unbundle just the files test1.c and test2.c. The following command will
unbundle just these two files:

$ bash srcshell test1.c test2.c

$ cat bundle2
#!/bin/bash
bundle: group files into distribution package

echo "# To unbundle, bash this file"
for i
do
 echo 'if echo $* | grep -q' $i '|| [$# = 0]'
 echo then
 echo "echo $i 1>&2"
 echo "cat >$i <<'End of $i'"
 cat $i
 echo "End of $i"
 echo fi
done

17.

5

18. In principle, recursion is never necessary. It can always be replaced by an
iterative construct, such as while or until. Rewrite makepath (page 1088) as
a nonrecursive function. Which version do you prefer? Why?

function makepath2()
{
wd=$(pwd)
pathname=$1

while [[$pathname = */* && ${#pathname} > 0]]
 do
 if [[! -d "${pathname%%/*}"]]
 then
 mkdir "${pathname%%/*}"
 fi
 cd "${pathname%%/*}"
 pathname="${pathname#*/}"
 done
if [[! -d $pathname && ${#pathname} > 0]]
 then
 mkdir $pathname
fi
cd $wd
}

The recursive version is simpler: There is no need to keep track of the work-
ing directory and you do not have to handle the task of making the final
directory separately.

19.20. Write a function that takes a directory name as an argument and writes to
standard output the maximum of the lengths of all filenames in that directory.
If the function’s argument is not a directory name, write an error message to
standard output and exit with nonzero status.

$ function maxfn () {
> declare -i max thisone
> if [! -d "$1" -o $# = 0]
> then
> echo "Usage: maxfn dirname"
> return 1
> fi
>
> max=0
> for fn in $(/bin/ls $1)
> do
> thisone=${#fn}
> if [$thisone -gt $max]
> then
> max=$thisone
> fi
> done
> echo "Longest filename is $max characters."
> }

6

21.22. Write a function that lists the number of ordinary files, directories, block special
files, character special files, FIFOs, and symbolic links in the working directory.
Do this in two different ways:

a. Use the first letter of the output of ls –l to determine a file’s type.

$ function ft () {
> declare -i ord=0 dir=0 blk=0 char=0 fifo=0 symlnk=0 other=0
>
> for fn in *
> do
> case $(ls -ld "$fn" | cut -b1) in
> d)
> ((dir=$dir+1))
> ;;
> b)
> ((blk=$blk+1))
> ;;
> c)
> ((char=$char+1))
> ;;
> p)
> ((fifo=$fifo+1))
> ;;
> l)
> ((symlnk=$symlnk+1))
> ;;
> a-z)
> ((other=other+1))
> ;;
> *)
> ((ord=ord+1))
> ;;
> esac
> done
>
> echo $ord ordinary
> echo $dir directory
> echo $blk block
> echo $char character
> echo $fifo FIFO
> echo $symlnk symbolic link
> echo $other other
> }

7

b. Use the file type condition tests of the [[expression]] syntax to determine
a file’s type.

$ function ft2 () {
> declare -i ord=0 dir=0 blk=0 char=0 fifo=0 symlnk=0 other=0
>
> for fn in *
> do
> if [[-h $fn]]
> then ((symlnk=$symlnk+1))
> elif [[-f $fn]]
> then ((ord=ord+1))
> elif [[-d $fn]]
> then ((dir=$dir+1))
> elif [[-b $fn]]
> then ((blk=$blk+1))
> elif [[-c $fn]]
> then ((char=$char+1))
> elif [[-p $fn]]
> then ((fifo=$fifo+1))
> else
> ((other=other+1))
> fi
> done
>
> echo $ord ordinary
> echo $dir directory
> echo $blk block
> echo $char character
> echo $fifo FIFO
> echo $symlnk symbolic link
> echo $other other
> }

